Army Science and Technology (S&T) Path Ahead

Update for the Vice Chief of Staff

October 3, 2012

Honorable Heidi Shyu

Assistant Secretary of the Army (Acquisition, Logistics and Technology) and Army Acquisition Executive

Our Mission

Design, develop, deliver and sustain products and services to enable our Soldiers to dominate the battlefield today and tomorrow.

Image Source: US Army Flickr and Tom Clancy's Ghost Recon Future Soldier

Strategic 30-Yr Look at Equipping & Sustainment

Are our portfolios well balanced against emerging threats/potential operational environment?

gaps vs. tradeoff with other PEGs

SRG Yearly Calendar

SOLDIERS AS THE DECISIVE EDGE

Strategic Path Forward

- Assess strengths, weaknesses, opportunities and threats, define critical capability gaps, map S&T strategy to close capability gaps
 - Layout 30-yr Program of Record portfolio: concept development, EMD, Production, sustainment
 - Assess S&T insertion opportunities
 - Linking sustainment strategy: average age of vehicle, upgrade plan, sunset plan
 - Balancing modernization with reset
- Link S&T portfolio into POR planning
- Strengthen S&T collaboration with other Services, FFRDCs, National Labs, academia, other Nations

The Army Must Remain Prepared for Worldwide Operations

Current Army total strength 1.1M Soldiers:

Active - 553,410 Reserve - 201,610 National Guard - 356,820

182,280 Soldiers deployed in ~160 countries

Data as of 4 Sep G3/5/7

DESIGN • DEVELOP • DELIVER • DOMINATE = SOLDIERS AS THE DECISIVE EDGE

Diversity of Threats

Asymmetric

- **IEDs**
- Mortars, artillery, rockets
- Suicide bombers

- Chemical & biological agents
- Unconventional methods
- Loose nuke
- Water, electric-grid
- Kidnapping, assassination

Terrorism

Nation-State

- Cyber attack
- Electronic Warfare (GPS, radar, communications)
- Advanced missiles (SAM, AAM, CM)
- Long range ballistic missiles
- Anti-satellite (ASAT)
- Directed Energy
- Advanced fighters, bombers, helicopters, UAVs
- Integrated Air Defense
- Deeply Buried, Hardened C2

- Cyber attack: Financial systems
- Kidnapping , assassination

Criminal Element

These capabilities will blur across the line in a highly networked society

SOLDIERS AS THE DECISIVE EDGE

Army Top Challenges

- Greater force protection (Soldier, vehicle, base) to ensure survivability across all operations.
- Ease overburdened Soldiers in Small Units.
- Timely mission command & tactical intelligence to provide situation awareness and communications in all environments
- Reduce logistic burden of storing, transporting, distributing and retrograde of materials
- Create operational overmatch (enhanced lethality and accuracy)
- ➤ Achieve operational *maneuverability* in all environments and at *high operational tempo*.
- Enable ability to operate in CBNRE environment
- Improve early detection of TBI
- Improve operational energy
- Improve individual & team training
- Reduce lifecycle cost of future Army capabilities

DESIGN • DEVELOP • DELIVER • DOMINATE

Challenge Investments

FY14* FY14-18*

Top S&T Challenges

6.2, 6.3, 6.7 Funding

\$1,641M \$8,448M

*FY14 BES

Force Protection \$642M \$3.054M

Overburden \$117M \$474M

MSN CMD & **Tactical** Intel \$353M \$1.826M

Logistics Burden \$27M \$112M

Operational Overmatch \$189M \$1.144M

Maneuver \$148M \$873M

CBRNE Operation \$0M** \$0M**

Traumatic Brain Injury \$5M \$40M

Operational Energy \$84M \$510M

Training \$56M \$315M

Lifecycle Costs \$19M \$98M

MSN CMD - Mission Command CBRNE - Chemical, Biological, Radiological, Nuclear, Explosive

Army's Challenge: Enhance Maneuverability

Desired Capabilities

- Higher speed, longer range aircraft
- More efficient platforms
- Mobility in all terrain
- IED / mine detection and neutralization at tactical speeds

<u>Technology Enablers</u>

- High speed rotor systems and low drag fuselages
- Future advanced rotorcraft drive system
- Advanced affordable turbine engine
- Vehicle management systems
- Active suspension
- Power-train, energy storage, thermal management, and friction reduction technologies for combat and tactical vehicles
- Algorithms and processing power for IED/mine detection

DESIGN • DEVELOP • DELIVER • DOMINATE

10

Air Portfolio Structure

FY13 FY13-17

Air Portfolio

6.2 and 6.3 Funding

\$141M \$762M

Platform Design & Structures

> \$28M \$216M

Engines & Drive Trains

> \$22M \$111M

Aircraft & **Occupant** Survivability

> \$26M \$124M

Maintain & Sustainability

> \$14M \$66M

Rotors & Vehicle **Management**

> \$18M \$71M

Aircraft Weapons & Sensors

> \$18M \$91M

Unmanned & Optionally Manned Systems

> \$15M \$83M

Investment **Areas**

- Advanced Aircraft Design
- Structures
- National Rotorcraft **Tech Center**

Investment Areas

Engines Drive Trains Investment Areas

- Degraded Visual **Environment**
- Signature Reduction
- Threat Warning & **Jammers**
- Vehicle Hardening

Investment Areas

·Health Usage **Monitoring**

Investment **Areas**

- Rotors Vehicle
- Management **Systems**

Investment Areas

- Cockpit **Displays** Sensors
- Weapons

Investment Areas

- Autonomy
- ·Human/ Machine Interface
- Unmanned Aerial Vehicle

DESIGN • DEVELOP • DELIVER -

SOLDIERS AS THE DECISIVE EDGE

SOLDIERS AS THE DECISIVE EDGE

Army's Challenge: Enhance Mobility

Engines & Drive Trains Sub-Portfolio

Goal: Provide increased power density to meet vertical lift operation requirements while reducing fuel usage

S&T Major Efforts include:

- 3000 shp turbine engine
- 7000 shp turbine engine
- Advanced high power density transmission

Near-term Goals:

- Develop turbine engine with 25% reduced fuel burn and 35% reduced production and maintenance costs (medium fleet)
- Develop turbine engine with 35% reduced fuel burn and 45% reduced costs (heavy fleet)
- Develop high power density transmission with 55% increased hp/wt and 35% reduced production and maintenance costs

Mid/Far-term Goals:

- Develop turbine engine with broad, high efficiency operating speed envelope
- Develop lightweight, durable multi-speed/variable speed transmission to provide variable output speed

Legacy/Existing Syst include:

- Chinook
- Apache
- Blackhawk
- Kiowa

Internal Stakeholders:

- AMRDEC
- ARL
- VAATE

External Stakeholders:

- PEO-Avn, Platform PMs
- PM-ASE
- G-3/5/7 Aviation, G-8
- Navy/USMC
- TRADOC TCMs

DESIGN • DEVELOP • DELIVER • DOMINATE =

SOLDIERS AS THE DECISIVE EDGE

Affordable Turbine Engines

DESIGN • DEVELOP • DELIVER • DOMINATE =

14

Advanced Affordable Turbine Engine

2 Contractors:

General Electric Advanced Turbine Engine Company

Schedule & Cost (\$M)						
Milestones		FY08	FY09	FY10	FY11	FY12
Aero, Mech Designs						
Fabrication - component /rig hardware - engine hardware		, [
Component Rig Tests - compressor, combustor - turbine, mech systems					\$	
Engine Tests						6
	Army D447	10.6	11.3	17.3	10.6	0.0
Total D447	Air Force	0.5	0.5	0.0	0.0	0.0
\$49.8 M*	GE Share	4.6	19.0	25.3	15.4	2.1
	ATEC Share	10.5	36.5	17.8	4.6	6.7

Purpose:

Develop advanced, affordable, 3000 hp class turboshaft engine technology providing improved operational capability for Blackhawk, **Apache & other Future Force rotorcraft**

Products:

- Two competing full system demos of an affordable, fuel efficient, high power/weight engine
- Technology readiness for transition to EMD engine program for UH-60/AH-64 upgrades
- Enhanced Software Design Tools to support future engine development efforts

Payoff:

- Transitioned to PM Utility Improved Turbine **Engine Program**
- Provides required range & payload capability for UH-60 Recapitalization
- Improved Hot/High Engine Capability for **Apache & Blackhawk**
- 35% Reduction in Production Cost (\$/hp) & **Maintenance Cost**
- Reduced logistic footprint
- Other Applications SOF, Jay Hawk, Seahawk, Joint Multi-Role Rotorcraft, HH-60 Recap

Army Rotary Wing Inventory & Age

Air Portfolio Recent Significant Transitions

- Apache AH-64
 - Manned-Unmanned Avionics Architecture
 - Video from Unmanned aircraft systems for Interoperability Teaming (VUIT-2)
 - Hostile Fire Indicator (Ground Fire Alerting System)
- Black Hawk UH-60
 - Advanced Affordable Turbine Engine
 - Health Usage and Monitoring System
- Chinook CH-47
 - Visual/Infrared (IR) Coatings Technology
 - Flight Control Laws
 - T-55 Engine Improvements
 - Rotor Blade Erosion

Strong legacy of successful development and demonstration

Defense S&T Funding

DESIGN • DEVELOP • DELIVER • DOMINATE

SOLDIERS AS THE DECISIVE EDGE

Army's S&T Portfolio*

*Source: Army Science and Technology Management Information System (ASTMIS) PB13

DESIGN • DEVELOP • DELIVER • DOMINATE

19

Army's Technical Challenges

Basic Research Portfolio

Extramural Research (53%)

University Affiliated Research Centers

ICB - Biotechnology **ICT - Immersive Simulation & Training** ISN - Nanotechnology

Centers for Enduring Needs **Vertical Lift Research, Automotive** Research, HP Computing, HBCU/MI

> **Multidisciplinary University Research Initiatives**

> > **University Single Investigator Program** ~ 1200 grants, ~340 schools

In-house Research (36%)

Core programs - AMC, MRMC, ERDC, ARI, SMDC

ILIR

Collaborative Technology / Research Alliances (11%)

Lab, academia, and industry -**Robotics, Micro Autonomous Systems** Technology, Network Science, Cognition and **Neuroergonomics, Multiscale Materials**

> **Network & Info Science International Technology** Alliance (US/UK)

> > CB - Institute for Collaborative Biotechnology

ICT - Institute for Creative Technology

ISN – Institute for Soldier Nanotechnology

Basic Research Investments

Basic Research Portfolio

FY13* FY13-17*

6.1 Funding

\$444M \$2341M

*PresBud Request FY13

Human Centric

\$70M \$364M

Information Centric

\$53M \$298M

Material Centric

\$155M \$816M

Platform Centric

\$47M \$253M

Enrichment Initiatives

\$118M \$611M

Investment Areas

- Life Sciences
- Behavioral
- Training
- Neuroscience
- Medical

Investment Areas

- Computing
- Cyber
- Decision Making
- Network Sciences

Investment Areas

- Classical Sciences
- Materials Modeling
- Biotechnology
- Nanotechnology
- Environment

Investment Areas

- Simulation
- Autonomy
- Vehicles

Investment Areas

- University Research Initiatives
- Innovative Lab Research
- Educational Outreach
- Foreign Technology

DESIGN • DEVELOP • DELIVER • DOMINATE

University Based Basic Research

University Affiliated Research Centers

Institute for Collaborative Biotechnology – UCSB, CalTech, MIT Bio-inspired materials, sensing, energy-storage, networks, and neuroscience

Institute for Creative Technology - USC

Immersive simulation and training, Human-Virtual to Human interactions, PTSD therapy

Institute for Soldier Nanotechnology – MIT Nano materials, fibers, sensing, medical

Centers of Excellence for Enduring Army Needs

Vertical Lift Research Centers –

Penn State, Georgia Tech, University of Maryland Improve tactical mobility, reduce logistics blueprint and increase survivability for rotary wing vehicles

Automotive Research Center –

University of Michigan

Leverage commercial technology for Army vehicle systems

•HBCU/MI Partnerships in Research Transitions -

Howard, Hampton, NC A&T, Delaware State

Advanced algorithms, Bayesian Imaging and signal processing for landmines and IED detect

DEVELOP • DELIVER • DOMINATE

Multidisciplinary University Research Initiatives

includes

-Defense University Research Instrumentation Program -Presidential Early Career Award for

Scientists and Engineers

University Single Investigator Program

~ 1200 grants, ~340 universities

Basic Research in physical sciences, mathematics, life sciences, engineering

SOLDIERS AS THE DECISIVE EDGE

Collaborative Technology / Research Alliances

Robotics -

General Dynamics Robotics Systems, Carnegie Mellon, Florida A&M, U. Penn, JPL

Expand technologies available for future unmanned systems with ability to team with Soldiers; Develop foundational manipulation / mobility behaviors

Micro Autonomous Systems Technology -BAE, Jet Propulsion Lab, U. Maryland, U. Michigan, U. Penn

Microsystem mechanics, processing for autonomous operation, microelectronics and platform integration

Cognition and Neuroergonomics -DCS Corp, Taiwan Brain Research Center, UC San Diego, U. Michigan, U. Texas

Materials in Extreme Dynamic Environments -JHU, CalTech, Rutgers, U. Delaware

Understanding materials under high strain-rates

Multiscale Multidisciplinary Modeling of Electronic Mat. -U. Utah, Boston U., Rensselaer Polytechnic Institute

Microscale properties to design macroscale behavior for electronics

Network Science – BBN, Penn State, U. Illinois-Urbana Champaign, Rensselaer Polytechnic Inst.

Communications networks, interplay of social/cognitive info; affect of one network on another

Network & Information Science International Technology Alliance – US/UK alliance led by IBM

Network operations in Coalition environments

DESIGN • DEVELOP • DELIVER • DOMINATE = SOLDIERS AS THE DECISIVE EDGE

In-House Basic Research

AMC/RDECOM -

Armor & Energetic Materials
Sensors and Electronics
Neuroergonomics
Human-Robotic Interaction
Air and Ground Vehicle Technology

Armaments
Combat Feeding
Chem/Bio Surface Science

ERDC –
Environmental Science
Training Land Natural
Resources and Sustainability

MRMC –
Infectious Diseases
Operational Medicine
Combat Casualty Care
Traumatic Brain Injury
Rehabilitative Medicine

ARI –
Personnel Measures
Leader Development
Training Effectiveness

DESIGN • DEVELOP • DELIVER • DOMINATE =

Realignment and Focus of Existing R&E EXCOM Elements

Annual R&E EXCOM Planning Calendar

Backup

Greater force protection (Soldier, vehicle, base) to ensure survivability across all operations

Army's Challenge: Enhance Protection

Desired Capabilities

- Holistic protection for Soldiers, ground, and air vehicles and operating bases
- Lighter and more capable protection against a wide range of threats
- Improved concealment, deception and threat avoidance

Technology Enablers

- Multi-function, lighter-weight materials with improved properties
- Novel components and systems for active and passive protection of platforms and bases
- Multi-band signature management and countermeasures
- Design tools, hi-fidelity models, robust simulations and improved test methodologies

DESIGN • DEVELOP • DELIVER • DOMINAT

Army's Challenge: Improved Combat Casualty Care

Desired Capabilities

- Hemorrhage control and resuscitation
- Comprehensive intensive care and enroute care
- Diagnose, predict and improve treatment of traumatic battlefield injuries

Technology Enablers

- Improved blood platelet storage and clotting of trauma injuries
- Learning algorithms to predict severity of injury and improve ventilation strategies
- Enhanced methods of regenerative medicine for improved bone and nerve gap repairs
- Novel stem cell therapies for wound healing
- Medical products for the treatment of the face and mouth, burns and scars, hard and soft tissue, volumetric muscle loss, and immune modulation

design • develop • deliver • dominate

Ease **overburdened** Soldiers and Squads in Small Units

Army's Challenge: Lighten the Load - physical and cognitive

Desired Capabilities

- Lightweight, mission tailorable equipment and energy assets
- Improved ease of use for new systems
- Improved Soldier readiness
- Autonomous offloading of equipment
- Precision re-supply

Technology Enablers

- Composite materials and miniature sensor systems
- Bio-sensors, personal area networks, and algorithms
- Accurate, more comprehensive assessment methods of Soldier knowledge, skills, abilities and resiliency
- Nutritional, physiological and cognitive research
- Holistic human system analysis and integration
- Decision making tools

Timely *mission command* & tactical intelligence to provide situation awareness and communications in all environments

Army's Challenge: Improve Tactical Intelligence

Desired Capabilities

- Avoid tactical and operational surprise
- Persistent Intelligence, Surveillance, and Reconnaissance (ISR) to detect and track threats, to include vehicles and dismounts
- Identification and discrimination of threats
- Actionable intelligence down to the squad level

Technology Enablers

- Light Detection and Ranging (LiDAR) sensors
- Integrated Electro Optical (EO/IR)/Long Wave Infrared, Millimeter Wave (MMW) radar
- Foliage penetration radar
- Hyper-spectral imaging
- Integrated dismount tracking with ID algorithm
- Apps to enhance multi-intelligence integration
- Algorithms to fuse data and decrease false alarms

DESIGN • DEVELOP • DELIVER • DOMINATE

34

Army's Challenge: Mission Command – Counter Cyber and Electronic Warfare (EW) Threats

Desired Capabilities

- Operate in a cyber battlefield (offensive and defensive)
- Operate in complex EW environments (RF, GPS, communications, radar, jamming)

Technology Enablers

- Chip-scale atomic clocks for ultra-precise timing
- Adaptive wide-band RF components
- Integrated Electronic Warfare systems to enable adaptive sense & avoid
- Trusted foundry chips, design-for-trust
- Trusted software
- Resilient architecture and framework
- · Identity management
- Polymorphic code

Dynamic monitoring to detect, analyze, respond and protect against unauthorized activity

DESIGN • DEVELOP • DELIVER • DOMINATE

Army's Challenge: Mission Command – Enhance Connectivity

Desired Capabilities

- Assured connectivity on the move
- Secure reliable communication at all levels
- Interoperability with coalition forces
- Cross domain access to unclassified, classified & coalition networks
- Common operating environment

Technology Enablers

- Integrated end-to-end secure network architecture
- Dynamic spectrum access
- Conformal multi-band antennas
- Self-healing, self-forming network
- Multi-channel, multi-waveform devices
- Software and algorithms to support multi-level security
- Integrated communications/EW architecture
- Flexible adaptive network manager

DESIGN • DEVELOP • DELIVER • DOMINATE SOLDIERS AS THE DECISIVE EDGE

Reduce logistic burden of **storing**, **transporting**, **distributing** and **retrograde** of materials

Army's Challenge: Enhance Transportation, Distribution and Waste Management

Desired Capabilities

- Improve capability to tactically transport and reliably deliver and retrograde supplies and waste to/from forward operating positions
- Improve consumable efficiencies of Forward Operating Bases (FOBs) and remote bases

Technology Enablers

- Distribution Management Tool that optimizes scheduling of tactical transport modes to more efficiently distribute sustainment
- Technology to monitor consumption and optimize energy efficiency
- Autonomous convoy/delivery technologies
- Low-cost, precision air drop
- Waste to energy conversion and waste reduction techniques
- Water recycling, repurposing and management techniques

DESIGN • DEVELOP • DELIVER • DOMINATE SOLDIERS AS THE DECISIVE EDGE

Army's Challenge: Enable Environmentally Sustainable Operations

Desired Capabilities

- Increased training land availability
- Optimized infrastructure life-cycle planning and operation
- Improved speed and safety for fielding new materiel solutions
- Environmental lifecycle assessment tools that support acquisition decisions

Technology Enablers

- Predictive software tools for determining energy losses in building envelopes
- Planning tools and lifecycle models for energy, water, waste resource optimization
- Novel detection, remediation, and mitigation methodologies for emerging energetic materials
- Predictive tools and algorithms for fate, transport and effects of chemicals and materials to aid in development of insensitive, sustainable energetic materials
- Assessment tools for identifying cumulative environmental impacts on training lands
- Analytical software tools for adaptive range and installation management due to climate change

Create *operational overmatch* (enhanced lethality and accuracy)

Army's Challenge: Enhance Lethality

High-Energy Laser Technology Demonstrator

Low Cost Tactical Extended Range Missile

Close Combat Missile Modernization

Cluster Munitions Replacement

Desired Capabilities

- Maintain lethal overmatch
- Increased accuracy
- Extended ranges
- Scalable, tailorable effects
- Ability to operate in GPS-denied environment
- Ability to effectively engage moving targets

Technology Enablers

- Selectable and Multi-Purpose Warheads
- Green kinetic-energy penetrator for Small Arms ammunition and Tank-fired rounds
- · Reduced-weight weapon components
- Guidance & Fire Control technologies
- · Propulsion technologies
- Disruptive Energetics (3-10x)
- Directed-energy weapons

High G, Miniaturized, Modular, Precision Target Sensor

Energy Density Scale (J/g)

Selectable Yield Unitary Warhead

Achieve operational maneuverability in all environments and at high operational tempo

Army's Challenge: Enhance Operational **Autonomy**

Desired Capabilities

- Trusted assets which operationally react to the complexity of the battlefield
- Autonomous assets to accomplish routine and high-risk mission tasks
- Scalable autonomy allowing human intervention or manned/unmanned teaming

Technology Enablers

- Autonomous behaviors algorithms for UAS dynamic replanning and contingency management
- Ground vehicle autonomy technologies to provide improved learning and manipulation to enable Soldier trust
- Algorithms for scalable autonomy intervention on existing tactical vehicles from driver assist to leader/follower
- Manned/unmanned autonomous behavior logic
- Autonomous material handling technology

Enable ability to **operate in CBRNE environment**

Army's Challenge: Enable Operation in Chem/Bio Environment

Desired Capabilities

- System integration of Defense Threat Reduction Agency (DTRA) Joint Program Executive Office (JPEO) Chem/Bio technologies with other battlefield assets, including medical countermeasures
- Integrated detection devices

 Technical expertise in fibers, Soldier and human systems, and human system integration to execute DTRA projects

Technology Enablers

- Novel materials for decontamination/inactivation of agents built into uniforms or "second skin"
- Integration of new protective mask capabilities into head protection systems
- Predictive models of human cognitive and physical performance while encapsulated
- Human Systems Integration engineering support for Program Managers

Improve early detection of TBI

Army's Challenge: Improve Early Detection of TBI

Desired Capabilities

- On-scene TBI assessment and diagnosis
- Effective treatment of TBI

Technology Enablers

- Biochemical research of specific biomarkers that indicate TBI to complete a field assay for the detection of TBI
- Novel drugs and therapeutic strategies and selective cooling to manage TBI
- Provide more effective assessment and intervention capabilities to mitigate the effects of combat on brain function

Improve operational energy

Army's Challenge: Improve Operational Energy

Desired Capabilities

- Increased Platform Fuel Efficiency
- Lighter, more powerful Soldier power sources
- Reduced Logistics Demand
- Energy-efficient structures and devices

Technology Enablers

- Advanced turbine engines
- High efficiency drive systems
- Electrochemical power sources for longer lasting power
- Wearable Power (fuel cells, new battery chemistries, energy harvesting, distribution) and recharging capability for improved mobility
- Alternative energy to reduce logistics
- Generators with multi-fuel use
- Intelligent power management
- Waste to energy conversion
- Energy loss models and management tools
- Materials and design of energy efficient structures

Electric Power for Silent Watch

Technologies

Advanced Affordable **Turbine Engine**

Integrated Energy Harvesters

Advanced Rotorcraft Drive System

Improve *individual & team training*

Army's Challenge: Individual & Collective Training

Desired Capabilities

- Live-Virtual-Constructive-Gaming (LVCG) and Immersive tools (anywhere, anyplace)
- Training and innovative learning methods
- Tools to manage, integrate and develop training events
- Realistic-Mission Command Centric integrated environments
- Increased training land availability

Technology Enablers

- Cognitive architecture for realistic virtual humans, with better social simulation tools
- Embedded training applications, mobile learning, integrated tutors
- Adaptation of commercially available electronics combined with LVCG and authoring tools for realistic anywhere, anyplace training events
- Mixed/Augmented reality hardware and software components that facilitate cognitive/emotional stressor, smells, and natural movements within LVCG and immersive environments
- Assessment tools for identifying cumulative environmental impacts on training lands

DESIGN • DEVELOP • DELIVER • DOMINATE = SOLDIERS AS THE DECISIVE EDGE

Reduce lifecycle cost of future Army capabilities

Army's Challenge: Reduce Lifecycle Cost

Desired Capabilities

- Sustainable and affordable components and systems
- Low cost per unit, reduced SWAP, streamlined / simple man-machine interfaces
- Systems that are manufacturable at low cost
- Reduced logistics footprint
- Reduce environmental impact of acquisition systems during training and operations

Technology Enablers

- Environmental lifecycle assessment tools supporting acquisition decisions
- Planning tools and lifecycle models for energy, water, waste resource optimization
- Small, lighter, and cheaper weapons/munitions components
- Efficient manufacturing processes and packaging techniques
- Sensing and algorithms to support condition-based maintenance
- Novel prediction, detection, remediation, and mitigation methodologies for environmental impact of emerging materials

Army S&T Laboratories and Centers

DESIGN • DEVELOP • DELIVER • DOMINATE = SOLDIERS AS THE DECISIVE EDGE

Army S&T Workforce*

Total Civilian Manpower: ~19,000

- ~ 12,000 Scientists & Engineers
- ~ 7,000 Technicians, Analysts, & Admin
- ~10% new hires per year
- ~ 450 Military S&E
- ~ 6500 Contractor S&E and support

Experience & Expertise

- ~ 2000 deployed & deployable employees:
- Matrix support to JPEO/PEO offices acquisition certification

Diversity

Civilian S&E Workforce Degrees*

*Source: 2010 Army Science and Technology Master Plan

